Artificial Intelligence 🤖
Differentiation
Differentiation formulae & properties

Differentiation formulae & properties

We start this section with some basic differentiation formulae.

  1. The derivative of a constant is zero: If f(x)=cf(x)=c where cc is a constant then f(x)=0f^{\prime}(x)=0.
  2. The power rule: If f(x)=xnf(x)=x^{n} where nn is a number and xx is a variable then:
f(x)=nxn1.f^{\prime}(x)=n x^{n-1} .

Differentiation properties

I. Multiplicative constant rule

ddx[cf(x)]=cdfdx\frac{d}{d x}[c f(x)]=c \frac{d f}{d x}
💡

This is a consequence of the multiplicative rule for limits: limxa[cf(x)]=climxaf(x)\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x), where cc is a constant.

II. Sum/difference rule

ddx[u(x)±v(x)]=u(x)±v(x)\frac{d}{d x}[u(x) \pm v(x)]=u^{\prime}(x) \pm v^{\prime}(x)
💡

This result follows from another rule of limits: limxa[f(x)±g(x)]=limxaf(x)±limxag(x)\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x).

III. Product rule

ddx[u(x)v(x)]=v(x)u(x)+u(x)v(x)\frac{d}{d x}[u(x) v(x)]=v(x) u^{\prime}(x)+u(x) v^{\prime}(x)

Starting from first principles and with a function f(x)=u(x)v(x)f(x)=u(x) v(x), we have

f(x+Δx)f(x)Δx=u(x+Δx)v(x+Δx)u(x)v(x)Δx,=u(x+Δx)v(x+Δx)u(x)v(x+Δx)+u(x)v(x+Δx)u(x)v(x)Δx,=v(x+Δx)u(x+Δx)u(x)Δx+u(x)v(x+Δx)v(x)Δx.\begin{aligned} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\frac{u(x+\Delta x) v(x+\Delta x)-u(x) v(x)}{\Delta x}, \\ & =\frac{u(x+\Delta x) v(x+\Delta x)-u(x) v(x+\Delta x)+u(x) v(x+\Delta x)-u(x) v(x)}{\Delta x}, \\ & =v(x+\Delta x) \frac{u(x+\Delta x)-u(x)}{\Delta x}+u(x) \frac{v(x+\Delta x)-v(x)}{\Delta x} . \end{aligned}

Now, as Δx0\Delta x \rightarrow 0, the above approaches

v(x)u(x)+u(x)v(x).v(x) u^{\prime}(x)+u(x) v^{\prime}(x) .

Note that the product rule can be extended to more than two functions.

IV. Quotient rule

ddx[u(x)v(x)]=u(x)v(x)u(x)v(x)[v(x)]2\frac{d}{d x}\left[\frac{u(x)}{v(x)}\right]=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{[v(x)]^{2}}

Similarly to the derivation of the product rule above, the derivative of the quotient is also proved using limits.