Artificial Intelligence 🤖
Random Variables & Probability Distributions

Random Variables & Probability Distributions

Discrete Random Variables: Univariate and bivariate distributions:

Function/PropertyUnivariate (X)Bivariate (X,Y)
Probability Mass FunctionP(X=x)=fX(x)P(X = x) = f_X(x)P(X=x,Y=y)=fX,Y(x,y)P(X = x, Y = y) = f_{X,Y}(x, y)
Cumulative Distribution FunctionFX(x)=P(Xx)F_X(x) = P(X \leq x)
FX(x)=uxfX(u)F_X(x) = \sum_{u \leq x} f_X(u)
FX,Y(x,y)=P(Xx,Yy)F_{X,Y}(x, y) = P(X \leq x, Y \leq y) (general)
FX,Y(x,y)=uxvyfX,Y(u,v)F_{X,Y}(x, y) = \sum_{u \leq x} \sum_{v \leq y} f_{X,Y}(u, v)
ExpectationE[g(X)]=xg(x)fX(x)E[g(X)] = \sum_{\forall x} g(x) \cdot f_X(x)E[g(X,Y)]=xyg(x,y)fX,Y(x,y)E[g(X, Y)] = \sum_{\forall x} \sum_{\forall y} g(x, y) f_{X,Y}(x, y)
Conditional ExpectationE[XY=y]=xxfXY(xy)E[X\|Y = y] = \sum_{\forall x} x f_{X\|Y}(x\|y)
(see below for fXY(xy)f_{X\|Y}(x\|y))
VarianceVar[X]=E[X2]E[X]2Var[X] = E[X^2] - E[X]^2
CovarianceCov[X,Y]=E[XY]E[X]E[Y]Cov[X,Y] = E[XY] - E[X]E[Y]
Ch 1 RelationshipsP(X,Y)P(X, Y)Expressed in terms of PDF: fX,Y(x,y)f_{X, Y}(x, y)
Conditional ProbabilityP(YX)=P(X,Y)P(X)P(Y\|X) = \frac{P(X,Y)}{P(X)}
P(XY)=P(X,Y)P(Y)P(X\|Y) = \frac{P(X,Y)}{P(Y)}
fYX(yx)=fX,Y(x,y)fX(x)fXY(xy)=fX,Y(x,y)fY(y)\begin{aligned} f_{Y \mid X}(y \mid x) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)} \\ f_{X \mid Y}(x \mid y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)}\end{aligned}
Total Law of ProbabilityP(X)=yP(X,y)P(X) = \sum_{\forall y} P(X, y)
MarginalisationfX(x)=yfX,Y(x,y)f_X(x) = \sum_{\forall y} f_{X,Y}(x, y)
fY(y)=xfX,Y(x,y)f_Y(y) = \sum_{\forall x} f_{X,Y}(x, y)
IndependenceP(X,Y)=P(X)P(Y)P(X, Y) = P(X)P(Y)fX,Y(x,y)=fX(x)fY(y)f_{X,Y}(x, y) = f_X(x)f_Y(y)

Continuous Random Variables: Univariate and bivariate distributions:

Function/PropertyUnivariate (X)(X)Bivariate (X,Y)(X, Y)
 Probability Density Function  PDF \begin{array}{l}\text { Probability Density Function } \\ \qquad \text { PDF }\end{array}P(a<X<b)=abfX(x)dxP(a<X<b)=\int_{a}^{b} f_{X}(x) d xP[(X,Y)A]=AfX,Y(x,y)dxdy (Note: region A is not necessarily rectangular) \begin{array}{c}\qquad P[(X, Y) \in A]=\iint_{A} f_{X, Y}(x, y) d x d y \\ \text { (Note: region } A \text { is not necessarily rectangular) }\end{array}
CDF\mathrm{CDF}FX(x)=P(Xx)FX(x)=xfX(u)du\begin{aligned} F_{X}(x) & =P(X \leq x) \\ F_{X}(x) & =\int_{-\infty}^{x} f_{X}(u) d u\end{aligned}FX,Y(x,y)=P(Xx,Yy) (general) FX,Y(x,y)=yxfX,Y(u,v)dudv\begin{array}{c}F_{X, Y}(x, y)=P(X \leq x, Y \leq y) \text { (general) } \\ F_{X, Y}(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(u, v) d u d v\end{array}
Link between PDF & CDFfX(x)=ddxFX(x)f_{X}(x)=\frac{d}{d x} F_{X}(x)fX,Y(x,y)=2xyFX,Y(x,y)f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)
 Expectation  Conditional Expectation \begin{array}{l}\text { Expectation } \\ \text { Conditional Expectation }\end{array}E[g(X)]=g(x)fX(x)dxE[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d xE[g(X,Y)]=g(x,y)fX,Y(x,y)dxdyE[XY=y]=xfXY(xy)dx (see below for fXY(xy))\begin{array}{c}E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y \\ E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x \\ \left.\text { (see below for } f_{X \mid Y}(x \mid y)\right)\end{array}
 Variance  Covariance \begin{array}{l}\text { Variance } \\ \text { Covariance }\end{array}Var[X]=E[X2]E[X]2\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}Cov[X,Y]=E[XY]E[X]E[Y]\operatorname{Cov}[X, Y]=E[X Y]-E[X] E[Y]
Ch 1 RelationshipsP(X,Y)P(X, Y)Expressed in terms of PDF: fX,Y(x,y)f_{X, Y}(x, y)
Conditional ProbP(YX)=P(X,Y)P(X)P(XY)=P(X,Y)P(Y)\begin{array}{l}P(Y \mid X)=\frac{P(X, Y)}{P(X)} \\ P(X \mid Y)=\frac{P(X, Y)}{P(Y)}\end{array}fYX(yx)=fX,Y(x,y)fX(x)fXY(xy)=fX,Y(x,y)fY(y)\begin{aligned} f_{Y \mid X}(y \mid x) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)} \\ f_{X \mid Y}(x \mid y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)}\end{aligned}
 Total Law  Marginalisation \begin{array}{c}\text { Total Law } \\ \text { Marginalisation }\end{array}P(X)=yP(X,y)P(X)=\sum_{\forall y} P(X, y)fX(x)=fX,Y(x,y)dyfY(y)=fX,Y(x,y)dx\begin{array}{l}f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\ f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x\end{array}
IndependenceP(X,Y)=P(X)P(Y)P(X, Y)=P(X) P(Y)fX,Y(x,y)=fX(x)fY(y)f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)