Artificial Intelligence 🤖
Foundations of Probability

Foundations of Probability

The goal of this section is to introduce the key definitions and concepts encountered in probability theory. An interesting historical note: the widespread use of probability in the scientific community did not occur until the early 20th20^{\text {th}} century, and this was in part facilitated by Andrei Kolmogorov's 1933 publication on the "Foundations of the Theory of Probability", which reduced the whole of probability at that time to a few simple axioms (described in section 1.3).

General Probability Relationships

Inclusion-Exclusion Formula

Two events (A,B)(A, B):

P(A∪B)=P(A)+P(B)−P(A,B)\quad P(A \cup B)=P(A)+P(B)-P(A, B)

Three events (A,B,C)(A, B, C):

P(A∪B∪C)=P(A)+P(B)+P(C)−P(A,B)−P(A,C)−P(B,C)+P(A,B,C)\quad P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A, B)-P(A, C)-P(B, C)+P(A, B, C)

Conditional Probability

P(A∣B)=P(A,B)P(B)P(A \mid B)=\frac{P(A, B)}{P(B)}

Chain Rule

P(A,B)=P(A∣B)P(B) Condition P(A,B) on BP(A,B,C)=P(A∣B,C)[P(B,C)] Condition on P(A,B,C) on (B,C)=P(A∣B,C)[P(B∣C)P(C)] Condition P(B,C) on C\begin{aligned} P(A, B) & =P(A \mid B) P(B) \quad \text { Condition } P(A, B) \text { on } \mathrm{B} \\ P(A, B, C) & =P(A \mid B, C)[P(B, C)] \quad \text { Condition on } P(A, B, C) \text { on }(\mathrm{B}, \mathrm{C}) \\ & =P(A \mid B, C)[P(B \mid C) P(C)] \quad \text { Condition } P(B, C) \text { on } \mathrm{C} \end{aligned}

Total Law

P(B)=∑i=1nP(B∣Ai)P(Ai)P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)

Bayes' Theorem

P(B,A)=P(A,B)P(B∣A)P(A)=P(A∣B)P(B) Condition on A on left and B on right P(B∣A)=P(A∣B)P(B)P(A) Bayes’ Theorem - changes condition event =P(A∣B)P(B)∑i=1nP(A∣Bi)P(Bi) Express P(A) using Total Law \begin{aligned} P(B, A) & =P(A, B) \\ P(B \mid A) P(A) & =P(A \mid B) P(B) \quad \text { Condition on } A \text { on left and } B \text { on right } \\ P(B \mid A) & =\frac{P(A \mid B) P(B)}{P(A)} \quad \text { Bayes' Theorem - changes condition event } \\ & =\frac{P(A \mid B) P(B)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} \quad \text { Express } P(A) \text { using Total Law } \end{aligned}

Independence

P(A,B)=P(A)P(B)P(A, B)=P(A) P(B)